
Toward a Sound Construction of EVM Bytecode
Control-Flow Graphs

Formal Techniques for Java-like Programs (FTfJP 2024)
Vienna, 20 Sep 2024

Vincenzo Arceri
University of Parma
Italy

Saverio Mattia Merenda
University of Parma
Italy

Greta Dolcetti
University of Venice
Italy

Luca Negrini
University of Venice
Italy

Luca Olivieri
University of Venice
Italy

Enea Zaffanella
University of Parma
Italy

Introduction to Ethereum and Smart Contracts

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 2

Ethereum
Public permissionless blockchain
Supporting smart contracts

Introduction to Ethereum and Smart Contracts

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 2

Ethereum
Public permissionless blockchain
Supporting smart contracts

Smart Contracts
Immutable programs stored on the blockchain
Critical to ensure they are bug-free to avoid irrevocable issues

Introduction to Ethereum and Smart Contracts

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 2

Ethereum
Public permissionless blockchain
Supporting smart contracts

Smart Contracts
Immutable programs stored on the blockchain
Critical to ensure they are bug-free to avoid irrevocable issues

EVM Bytecode
A low-level, stack-based language, executed in a virtual machine
Instructions manipulate the stack directly
Supports arithmetic, logical, and execution control flow operations

EVM Bytecode Overview

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 3

Example

[00] PUSH1 0x05
[02] PUSH1 0x05
[04] EQ
[05] PUSH1 0x08
[07] PUSH1 0x04
[09] ADD

EVM Bytecode Overview

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 4

Example

[00] PUSH1 0x05
[02] PUSH1 0x05
[04] EQ
[05] PUSH1 0x08
[07] PUSH1 0x04
[09] ADD

EVM Bytecode Overview

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 5

Example

[00] PUSH1 0x05
[02] PUSH1 0x05
[04] EQ
[05] PUSH1 0x08
[07] PUSH1 0x04
[09] ADD

EVM Bytecode Overview

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 6

Example

[00] PUSH1 0x05
[02] PUSH1 0x05
[04] EQ
[05] PUSH1 0x08
[07] PUSH1 0x04
[09] ADD

EVM Bytecode Overview

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 7

Example

[00] PUSH1 0x05
[02] PUSH1 0x05
[04] EQ
[05] PUSH1 0x08
[07] PUSH1 0x04
[09] ADD

EVM Bytecode Overview

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 8

Example

[00] PUSH1 0x05
[02] PUSH1 0x05
[04] EQ
[05] PUSH1 0x08
[07] PUSH1 0x04
[09] ADD

EVM Bytecode Overview

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 9

Example

[00] PUSH1 0x05
[02] PUSH1 0x05
[04] EQ
[05] PUSH1 0x08
[07] PUSH1 0x04
[09] ADD

Challenges in Building CFGs for EVM Bytecode

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 10

Control flow instructions
Execution is sequential: begins with the first opcode and proceeds sequentially
JUMP and JUMPI alter the execution flow
JUMPDEST marks valid jump destinations: computed at runtime

Challenges in Building CFGs for EVM Bytecode

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 10

Control flow instructions
Execution is sequential: begins with the first opcode and proceeds sequentially
JUMP and JUMPI alter the execution flow
JUMPDEST marks valid jump destinations: computed at runtime

Dynamic jumps
Jump targets are not always explicitly defined
We can identify two types of jumps: pushed jumps and orphan jumps

Dynamic jumps create complex situations when identifying valid jump targets.

Pushed jumps

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 11

Definition
Jump target is determined by a value pushed onto the stack
Jump destination is known at compile-time

[00] PUSH1 0x01
[02] PUSH1 0x02
[04] JUMP

Example of pushed jump.

Orphan jumps

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 12

[00] PUSH1 0x01
[02] PUSH1 0x02
[04] ADD
[05] JUMP

Example of orphan jump.

Definition
Jumps whose targets are not immediately obvious from the code
Jump target is not known at compile-time and is determined during execution

Sound CFGs for EVM Bytecode (1/2)

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 13

Static Analysis
Used to identify potential issues without executing the code
Essential for early detection of bugs and vulnerabilities

Sound CFGs for EVM Bytecode (1/2)

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 13

Static Analysis
Used to identify potential issues without executing the code
Essential for early detection of bugs and vulnerabilities

Control-flow Graphs (CFGs)
Data structure representing all paths that may be traversed during program execution
Nodes represent basic blocks of instructions; edges represent control flow
Essential for effective static analysis

Building a Sound CFG allows us to perform a sound Static Analysis.

Sound CFGs for EVM Bytecode (2/2)

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 14

Challenges
Jump destination targets aren't always clear from syntax alone

Pushed jumps: targets are clear from the syntax
Orphan jumps: targets are computed at runtime

[00] PUSH1 0x01
[02] PUSH1 0x02
[04] JUMP

Example of pushed jump.

[00] PUSH1 0x01
[02] PUSH1 0x02
[04] ADD
[05] JUMP

Example of orphan jump.

Sound CFGs for EVM Bytecode (2/2)

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 14

Challenges
Jump destination targets aren't always clear from syntax alone

Pushed jumps: targets are clear from the syntax
Orphan jumps: targets are computed at runtime

Goal
Build a sound CFG for EVM Bytecode
Over-approximate jump destinations for each jump node

[00] PUSH1 0x01
[02] PUSH1 0x02
[04] JUMP

Example of pushed jump.

[00] PUSH1 0x01
[02] PUSH1 0x02
[04] ADD
[05] JUMP

Example of orphan jump.

Contribution of the Paper

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 15

Novel approach
Abstract interpretation-based method to construct CFGs for EVM bytecode
Abstract domains to evaluate instructions to over-approximate stacks reaching each node

* github.com/lisa-analyzer/evm-lisa

https://github.com/lisa-analyzer/evm-lisa

Contribution of the Paper

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 15

Novel approach
Abstract interpretation-based method to construct CFGs for EVM bytecode
Abstract domains to evaluate instructions to over-approximate stacks reaching each node

Iterative algorithm
Iteratively builds the CFG until a stable, sound graph is achieved
Handles pushed jumps and orphan jumps effectively

In this paper we present EVMLiSA,* a static analyzer for EVM bytecode that
demonstrates practical application and effectiveness of the proposed method.

* github.com/lisa-analyzer/evm-lisa

https://github.com/lisa-analyzer/evm-lisa

Definition

Where are sets of integers having cardinality at most 𝑘
Values of are the elements of abstract stacks

Abstract domain of 𝑘-sets of integers (1/2)

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 16

Example of abstract
stack with k = 2.

Definition

Where are sets of integers having cardinality at most 𝑘
Values of are the elements of abstract stacks

Special elements
 denotes an unknown set of integers
 denotes an unknown set of integers that may correspond to valid jump destinations
 denotes an unknown set of integers that don’t correspond to valid jump destinations

Abstract domain of 𝑘-sets of integers (1/2)

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 16

Example of abstract
stack with k = 2.

Definition

Where are sets of integers having cardinality at most 𝑘
Values of are the elements of abstract stacks

Special elements
 denotes an unknown set of integers
 denotes an unknown set of integers that may correspond to valid jump destinations
 denotes an unknown set of integers that don’t correspond to valid jump destinations

Why did we choose to differentiate and ?
Unusual and tricky sequences of opcodes may arise
EVM bytecode is generated by high-level languages

Abstract domain of 𝑘-sets of integers (1/2)

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 16

Example of abstract
stack with k = 2.

Example

TIMESTAMP pushes the current block’s timestamp onto the stack
The JUMP opcode uses the top stack value to jump in the code

Abstract domain of 𝑘-sets of integers (2/2)

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 17

[00] TIMESTAMP
[01] JUMP

Example

TIMESTAMP pushes the current block’s timestamp onto the stack
The JUMP opcode uses the top stack value to jump in the code

The semantics of TIMESTAMP returns

We’ll use this to assess if destination targets of a jump have been resolved or
not.

Abstract domain of 𝑘-sets of integers (2/2)

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 17

[00] TIMESTAMP
[01] JUMP

Abstract elements

Represents stacks with exactly h elements, where is the top of the stack
Stacks with fewer than ℎ elements are modeled as stacks with exactly ℎ, filling gaps with

Abstract domain of ℎ-sized stack (1/3)

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 18

Example of abstract
stack with ℎ = 4.

Abstract elements

Represents stacks with exactly h elements, where is the top of the stack
Stacks with fewer than ℎ elements are modeled as stacks with exactly ℎ, filling gaps with

Definition

Lattice operators are element-wise applications of the ones

 represents top and bottom special element, respectively

Abstract domain of ℎ-sized stack (1/3)

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 18

Example of abstract
stack with ℎ = 4.

Definition
The abstract function pushes a into

Fig. a shows an abstract stack of with size 3

Fig. b and Fig. c show the result of abstractly executing PUSH, starting from the abstract

stack in Fig. a and Fig. b, respectively

Abstract domain of h-sized stack (Push function)

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 19

(a) (b) (c)

Definition
The abstract function pops an element from

Shifts elements up and fills the bottom with if , or with if

Fig. b is obtained by popping an element from the abstract stack of Fig. a

Abstract domain of h-sized stack (Pop function)

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 20

(a) (b)

Definition
The described approach defines a static analysis that over-approximates concrete stacks
for each node in the CFG

Static Analysis Algorithm

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 21

Definition
The described approach defines a static analysis that over-approximates concrete stacks
for each node in the CFG

Algorithm
 Create an initial, partial CFG with only sequential edges1.
 Run static analysis to compute the abstract stack for each node2.
 Use the analysis to try to resolve jump destinations3.
 Re-run the analysis each time a new edge is added (back to point 2)4.
 Stop when no more edges can be added to the CFG5.

Static Analysis Algorithm

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 21

Jump Resolution

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 22

[00] PUSH1 0x05
[02] PUSH1 0x05
[04] EQ
[05] PUSH1 0x08
[07] PUSH1 0x04
[09] ADD
[0a] JUMPI // orphan jump
[0b] INVALID
[0c] JUMPDEST
[0d] PUSH1 0x01
[0f] JUMPDEST

Jump Resolution

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 23

[00] PUSH1 0x05
[02] PUSH1 0x05
[04] EQ
[05] PUSH1 0x08
[07] PUSH1 0x04
[09] ADD
[0a] JUMPI // orphan jump
[0b] INVALID
[0c] JUMPDEST
[0d] PUSH1 0x01
[0f] JUMPDEST

Jump Resolution

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 24

[00] PUSH1 0x05
[02] PUSH1 0x05
[04] EQ
[05] PUSH1 0x08
[07] PUSH1 0x04
[09] ADD
[0a] JUMPI // orphan jump
[0b] INVALID
[0c] JUMPDEST
[0d] PUSH1 0x01
[0f] JUMPDEST

Jump Resolution

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 25

[00] PUSH1 0x05
[02] PUSH1 0x05
[04] EQ
[05] PUSH1 0x08
[07] PUSH1 0x04
[09] ADD
[0a] JUMPI // orphan jump
[0b] INVALID
[0c] JUMPDEST
[0d] PUSH1 0x01
[0f] JUMPDEST

Jump Resolution

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 26

[00] PUSH1 0x05
[02] PUSH1 0x05
[04] EQ
[05] PUSH1 0x08
[07] PUSH1 0x04
[09] ADD
[0a] JUMPI // orphan jump
[0b] INVALID
[0c] JUMPDEST
[0d] PUSH1 0x01
[0f] JUMPDEST

Jump Resolution

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 27

[00] PUSH1 0x05
[02] PUSH1 0x05
[04] EQ
[05] PUSH1 0x08
[07] PUSH1 0x04
[09] ADD
[0a] JUMPI // orphan jump
[0b] INVALID
[0c] JUMPDEST
[0d] PUSH1 0x01
[0f] JUMPDEST

Jump Resolution

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 28

[00] PUSH1 0x05
[02] PUSH1 0x05
[04] EQ
[05] PUSH1 0x08
[07] PUSH1 0x04
[09] ADD
[0a] JUMPI // orphan jump
[0b] INVALID
[0c] JUMPDEST
[0d] PUSH1 0x01
[0f] JUMPDEST

Jump Resolution

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 29

[00] PUSH1 0x05
[02] PUSH1 0x05
[04] EQ
[05] PUSH1 0x08
[07] PUSH1 0x04
[09] ADD
[0a] JUMPI // orphan jump
[0b] INVALID
[0c] JUMPDEST
[0d] PUSH1 0x01
[0f] JUMPDEST

Problem
While loops occur, the analysis merges abstract stacks into one using the least upper
bound (lub) operator
May lose precision when merging elements via lub of the domain if 𝑘 is exceeded
The result would be , losing all information

From Abstract Stacks to Sets of Abstract Stacks (1/2)

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 30

Example of lub operation with 𝑘 = 1.

From Abstract Stacks to Sets of Abstract Stacks (2/2)

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 31

Solution
Define an abstract stacks set domain with sets of abstract stacks, with at most 𝑙 elements

 is returned when the size of the abstract stacks set exceeds 𝑙
No longer need to compute the lub on abstract stacks
Each element of an abstract stack can now be an integer value (𝑘 = 1)

Before After

Experimental Evaluation (1/5)

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 32

EVMLiSA*
Static analyzer for EVM bytecode built on LiSA (Library for Static Analysis)
Generates CFGs from EVM bytecodes based on the approach described in this paper

Evaluation
Dataset: ~1700 smart contracts from a set of 5000 Ethereum contracts
Contracts have fewer than 3000 opcodes each (to allow manual inspection)
Benchmark suite: ~3M opcodes in total, including ~240K jumps

* github.com/lisa-analyzer/evm-lisa

https://github.com/lisa-analyzer/evm-lisa

Jump classification
Our evaluation measures resolved jumps, classified as follows:

Resolved: if all the top values of are integer values or
Unresolved: if any stack reaching the jump has an unknown value that could be a valid
destination
Maybe unreachable: if a jump node is not reached in the CFG by a path from its entry node
Definitely unreachable: if no stack reaches the jump node
Maybe unresolved: if the stack set exceeded the maximal stack size 𝑙

(Maybe) Unresolved jumps can be reduced by fine-tuning the parameters 𝑙 and ℎ.

Experimental Evaluation (2/5)

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 33

: top
: top may jump target
: top don’t jump target

Classification % Jumps

Resolved 96.73

Maybe unreachable 2.41

Definitely unreachable 0.69

Unresolved 0.16

Maybe unresolved 0.01

Experimental Evaluation (3/5)

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 34

Results
We run EVMLiSA on the ~1700 smart contracts with ℎ = 128 and 𝑙 = 32, corresponding to
the maximal height of abstract stacks and the maximal size of abstract stack sets,
respectively

SLOAD problem
Jumps marked as (maybe) unresolved are caused by the SLOAD opcode
SLOAD pops a stack element to fetch a value from blockchain memory, which is statically
unknown
EVMLiSA models SLOAD by popping and pushing onto the stack

Specific observation
The retrieved value was used as a jump destination, leading to an unresolved jump label
This may result from static analysis over-approximation

We leave the handling of this specific precision problem as future work.

Experimental Evaluation (4/5)

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 35

Further experiment
Refined benchmark: selected contracts where SLOAD value doesn't affect jump destination
~550 smart contracts, ~837K opcodes, ~59K jumps, ℎ = 128, 𝑙 = 32

Experimental Evaluation (5/5)

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 36

Classification % Jumps
(all tests)

% Jumps
(refined)

Resolved 96.73 97.83

Maybe unreachable 2.41 0

Definitely unreachable 0.69 2.17

Unresolved 0.16 0

Maybe unresolved 0.01 0

Resolving SLOAD problem
Introducing the ability to read external information from the persistent storage
Hybrid beta-version already implemented, resolving 100% of jumps in the original benchmark
of 5000 smart contracts
Hybrid approach is effective but strays from static analysis principles due to reliance on
external data.

Checker
Developing Reentrancy & Buffer Overflow checker
Implementing a Gas Estimator

Future works

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 37

Introduced a new approach to constructing sound CFGs for EVM bytecode
Used abstract interpretation to over-approximate behavior and identify
dynamic jump destinations
Refined the CFG iteratively, using domains tailored to EVM's characteristics
Implemented EVMLiSA, showing practical effectiveness
Tested on real smart contracts, proving it handles real-world EVM bytecode

Conclusions

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) 38

github.com/lisa-analyzer/evm-lisa

https://github.com/lisa-analyzer/evm-lisa

Bonus (How JUMPI works)

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) b.1

[10] PUSH1 0x32
[12] JUMPI
[13] PUSH1 0x14
 ...
[32] JUMPDEST
[33] EQ

Toward a Sound Construction of EVM Bytecode Control-Flow Graphs (FTfJP ‘24) b.2

Example of lub operation with 𝑘 = 2.

Bonus (A benefit of the Abstract Stacks Set)

