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Abstract
Ethereum enables the creation and execution of decentralized ap-

plications through smart contracts, that are compiled to Ethereum

Virtual Machine (EVM) bytecode. Once deployed in the blockchain,

the bytecode is immutable; hence, ensuring that smart contracts are

bug-free before their deployment is of utmost importance. A crucial

preliminary step for any effective static analysis of EVM bytecode

is the extraction of the control-flow graph (CFG): this presents

significant challenges due to potentially statically unknown jump

destinations. In this paper we present a novel approach, based on

abstract interpretation, aiming at building a sound CFG from EVM

bytecode smart contracts. Our analysis, which is implemented in

our static analyzer EVMLiSA, is based on a parametric abstract

domain that approximates concrete execution stacks at each pro-

gram point as an 𝑙-sized set of abstract stacks of maximal height

ℎ; the results of the analysis are then used to resolve the jump

destinations at jump nodes. In our preliminary experiments, by

fine-tuning the analysis parameters, EVMLiSA builds sound CFGs

for all smart contracts where permanent storage-related opcodes

do not influence jump destinations.

CCS Concepts
• Theory of computation→ Program analysis; • Software and
its engineering→ Automated static analysis.
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Static analysis, Abstract interpretation, Smart contracts, EVM byte-

code, Ethereum

ACM Reference Format:
Vincenzo Arceri, Saverio Mattia Merenda, Greta Dolcetti, Luca Negrini,

Luca Olivieri, and Enea Zaffanella. 2024. Towards a Sound Construction

of EVM Bytecode Control-Flow Graphs. In Proceedings of the 26th ACM
International Workshop on Formal Techniques for Java-like Programs (FTfJP

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

FTfJP ’24, September 20, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1111-4/24/09

https://doi.org/10.1145/3678721.3686227

’24), September 20, 2024, Vienna, Austria. ACM, New York, NY, USA, 6 pages.

https://doi.org/10.1145/3678721.3686227

1 Introduction
Ethereum [17] is historically one of the most popular permission-

less blockchain. The key feature of Ethereum is the ability to exe-

cute Turing-complete smart contracts through the EVM [2]. Smart

contracts are computer programs immutably stored within the

blockchain: once deployed, they cannot be modified, so any bug

or vulnerability in the contract code can have irrevocable conse-

quences, potentially causing the loss of funds or the execution of

unwanted actions. Therefore, it is of utmost importance to make

sure that smart contracts are bug-free before their deployment. A

common technique to achieve this goal is static analysis, which

analyzes code without actually executing it. To identify potential

security issues, static analysis often relies on suitable intermediate

representations of the program code, such as the widespread CFGs,

providing a graphical representation of the control paths that might

be traversed during the program’s execution.

Ethereum supports different high-level languages for smart con-

tract development (such as Solidity [6] or Vyper [16]), but the EVM

runs only code compiled to a low-level language called EVM byte-

code. According to [11], when compared to the analysis of high-level

source code, the analysis of bytecode provides several advantages,

such as the faithfulness of the instruction semantics. Also, being

able to analyze bytecode is mandatory when the source code of the

smart contracts is not available. However, building CFGs for EVM

bytecode is a non-trivial task: contrary to other compiled languages,

jump destinations are computed at run-time by using the values on

the operand stack, which in general are unknown at compile-time.

One thus has to resort to sound approximations of such CFGs, that

must contain all possible execution paths that the smart contract

can take at run-time to properly identify all the vulnerabilities of

interest. While building a sound overapproximation of a CFG is

trivial (since jump targets are identified by a specific opcode, one

can connect each jump to all possible targets), reducing the number

of spurious paths is crucial to ensure that the subsequent seman-

tic analyses are precise enough to achieve the required level of

accuracy.

Contribution. This paper presents a novel abstract interpretation-
based CFG reconstruction procedure for Ethereum smart contracts.
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Our approach targets the EVM bytecode produced by the compila-

tion step and is thus agnostic w.r.t. the source-level language used

to develop the contracts. In summary:

• we propose an abstract domain for tracking the operand

stacks reaching each opcode;

• we provide an algorithm exploiting the abstract stacks to

detect possible jump targets, introducing new edges into the

(partial) CFGs;

• we iterate such algorithm up to a fixpoint, building a final

CFG that soundly overapproximates the concrete CFG up to

some configuration parameters.

Paper structure. Sect. 2 provides an overview of the EVM byte-

code and discusses the problem of resolving the target of jumps.

Sect. 3 reports our approach for reconstructing CFGs resolving the

targets of jump instructions in EVM bytecode. In Sect. 4, we present

EVMLiSA, an abstract interpretation-based static analyzer for EVM

bytecode where we have implemented our solution, and reports

its comparison with a state-of-the-art analyzer for EVM bytecode.

Sect. 5 discusses recent related works. Sect. 6 concludes.

2 EVM Bytecode
EVM bytecode is a Turing-complete, stack-based, low-level lan-

guage consisting of ∼150 instructions called opcodes.1 These are
interpreted by the EVM to manipulate a stack whose items are

256-bit words. Each instruction is encoded as a hexadecimal num-

ber, starting with 0x. Let us consider a simple fragment of EVM

bytecode: 60 01 60 02 01. The byte 60 corresponds to the PUSH1
opcode, which pushes one byte onto the stack. The pushed byte is

the one following the opcode, i.e., 01. Similarly, the bytes 60 02
correspond to the EVM instruction PUSH1 0x02. The last byte, i.e.,
01, corresponds to the ADD opcode, whose semantics pops two items

from the stack, sums them, and pushes the result onto the stack.

Thus, the translated human-readable version of the bytecode string

previously analyzed is

PUSH1 0x01 PUSH1 0x02 ADD
and, after its execution, the item at the top of the stack is the 256-bit

value 3.

Altering the flow of execution. The execution flow of a contract

written in EVM bytecode starts with the first opcode and proceeds

sequentially. The only EVM opcodes that can alter the flow of

execution of a smart contract, without halting,
2
are JUMP and JUMPI.

The JUMP instruction consists of an unconditional jump to a specific

location of the program, which is the one at the address stored in

the topmost item of the stack (which is popped off). For instance,

let us consider the following fragment:

PUSH1 0x10 PUSH1 0x20 JUMP
When the JUMP instruction is met, it finds the value 0x20 at the top
of the stack. Thus, the value 0x20 is popped from the stack, the

program counter is set to 0x20, and the execution proceeds from

the instruction at that address.

1
The full list of EVM opcodes is available at [17].

2
Execution can halt: (a) implicitly, when the program counter goes beyond the last

opcode of the program; or (b) explicitly, when processing opcodes STOP, RETURN,
REVERT, SELFDESTRUCT, INVALID; or (c) exceptionally, when facing illegal conditions

(e.g., stack underflow).

Similarly, the JUMPI instruction consists of a conditional jump;

the execution will jump to the address stored on the topmost item of

the stack only if the item below it (i.e., the second topmost item) is

non-zero; otherwise, the execution proceeds with the next opcode.

In both cases, the two topmost items are popped off the stack.

Note that the target location of a jump instruction must corre-

spond to a JUMPDEST opcode, otherwise, the execution will halt

in exceptional mode. The JUMPDEST instruction does not alter the

stack; its only purpose is to flag those locations of the program to

which a (conditional or unconditional) jump is allowed.

2.1 Orphan Jumps
As shown above, the locations to which JUMP and JUMPI opcodes
jump are not hardcoded as data in the instruction syntax (as, e.g.,

for the value pushed onto the stack by the PUSH1 opcode); rather,
the location is dynamically computed by inspecting the items on

the stack. Nonetheless, there are cases where it is easy to stati-

cally predict the destination of a jump instruction without actually

executing the smart contract. For instance, in the two fragments

analyzed previously, the destinations of the JUMP and JUMPI in-

structions are easily deduced from the source code, because the

two opcodes are syntactically preceded by a PUSH instruction (in

both cases PUSH1 0x20). Borrowing the terminology from [14], we

call these instructions pushed jumps.
Pushed jumps pose no problem for the construction of the CFG

since jump targets can be syntactically resolved. Amore challenging

class of jumps to resolve is the one of the so-called orphan jumps [14].
A simple yet expressive example of an orphan jump is reported

below:

PUSH1 0x0A PUSH1 0x0C ADD JUMP
In this case, the target of the JUMP instruction cannot be immedi-

ately determined from a syntactic inspection of the source code; to

properly resolve the jump and build a precise CFG we need some

form of program analysis that can deduce the possible contents of

the stack at run-time. In the next section, we present an abstract

interpretation-based solution for resolving orphan jump targets.

3 Construction of EVM Bytecode CFGs
For resolving jump destinations, our analysis relies on an abstract

domain ofℎ-sized stacks whose elements are 𝑘-sized sets of integers,

with ℎ, 𝑘 > 0.

Definition 3.1 (Abstract domain of 𝑘-sets of integers Z♯

𝑘
).

Z♯

𝑘
≜ ⟨℘≤𝑘 (Z) ∪ {⊤Z,⊤Z,⊤Z♯

𝑘

}, ⊑
Z♯

𝑘

,⊔
Z♯

𝑘

,⊓
Z♯

𝑘

,⊤
Z♯

𝑘

,∅⟩,

where elements in ℘≤𝑘 (Z) are sets of integers having cardinal-
ity at most 𝑘 . There are three special elements: ⊤Z, denoting an

unknown set of integers that may correspond to valid jump des-

tinations; ⊤Z, denoting an unknown set of integers that do not

correspond to valid jump destinations (see Ex. 3.2); and ⊤
Z♯

𝑘

, denot-

ing an unknown set of integers. The motivation behind the choice

of differentiating between ⊤Z and ⊤Z is explained in the following

example.

Example 3.2. Unusual and tricky sequences of opcodes may arise,

being EVM bytecode a low-level language and generated by high-

level languages. For example, let us consider the following fragment:

12
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{4, 5}
{2, 3}
{1}

∅

(a)

{6}
{4, 5}
{2, 3}
{1}

(b)

{4, 5}
{2, 3}
{1}
⊤

(c)

Figure 1: Examples of abstract stacks, elements of St#
2,4
.

TIMESTAMP JUMP. The first opcode pushes the current block’s times-

tamp onto the stack. Then, the JUMP opcode takes the value on top

of the stack and attempts to jump to that position in the code. Al-

though it is a valid operation, in a real-world scenario it is unlikely

that the value inserted by TIMESTAMP would be used as a jump des-

tination. Thus, the semantics of TIMESTAMP returns ⊤Z. Similarly,

we model the semantics of several other opcodes to return ⊤Z.
3

The partial order ⊑
Z♯

𝑘

is the subset inclusion over elements of

℘≤𝑘 (Z) (so that ∅ is the bottom element and ⊤Z is the top element

of the sub-lattice), enriched with ∅ ⊑
Z♯

𝑘

⊤Z, ⊤Z ⊑Z♯

𝑘

⊤
Z♯

𝑘

, and

⊤Z ⊑Z♯

𝑘

⊤
Z♯

𝑘

. The least upper bound and greatest lower bound

operators ⊔
Z♯

𝑘

,⊓
Z♯

𝑘

: Z♯

𝑘
× Z♯

𝑘
→ Z♯

𝑘
are the ones induced by ⊑

Z♯

𝑘

.

Then, we define the domain of ℎ-sized abstract stacks, approx-

imating concrete stacks with their top ℎ elements. In particular,

abstract elements belong to the following set

S
Z♯

𝑘
,ℎ
≜ {[𝑠0, 𝑠1, . . . , 𝑠ℎ−1] | ∀𝑖 ∈ [0, ℎ − 1] . 𝑠𝑖 ∈ Z♯

𝑘
},

namely the set of stacks having exactly ℎ elements from Z♯

𝑘
, where

the top of the stack is the rightmost element 𝑠ℎ−1. Note that concrete
stacks having fewer than ℎ elements are modeled by abstract stacks

with exactly ℎ elements, filling the missing elements with (a prefix

made of) ∅ ∈ Z♯

𝑘
. For instance, Fig. 1a depicts an abstract stack of

S
Z♯

2
,4
with size 3.

Definition 3.3 (ℎ-sized stack abstract domain).

St#
𝑘,ℎ

≜ ⟨S
Z♯

𝑘
,ℎ
∪ {⊥St#

𝑘,ℎ
},⊔St#

𝑘,ℎ
,⊓St#

𝑘,ℎ
,⊤St#

𝑘,ℎ
,⊥St#

𝑘,ℎ
⟩,

where ⊥St#
𝑘,ℎ

is a special bottom element, describing an invalid

stack. It differs from theℎ-sized stack [∅, . . . ,∅], which describes an
empty stack.

4
The top element is the ℎ-sized stack whose elements

are all ⊤
Z♯

𝑘

, i.e., ⊤St#
𝑘,ℎ

= [⊤
Z♯

𝑘

, . . . ,⊤
Z♯

𝑘

]. Lattice operators are

element-wise applications of the ones over Z♯

𝑘
, with a special case

for handling ⊥St#
𝑘,ℎ

.

The abstract function push : St#
𝑘,ℎ
×Z♯

𝑘
→ St#

𝑘,ℎ
pushes a 𝑘-sized

set onto an abstract stack, taking into account that it can only keep

3
The full list of opcode that pushes ⊤Z is: ORIGIN, CALLER, CALLVALUE,
CALLDATASIZE, CODESIZE, GASPRICE, RETURNDATASIZE, COINBASE, TIMESTAMP,
NUMBER, DIFFICULTY, GASLIMIT, CHAINID, SELFBALANCE, GAS, MSIZE, BASEFEE, SHA3,
BALANCE, CALLDATALOAD, EXTCODESIZE, EXTCODEHASH, BLOCKHASH, CREATE, CREATE2,
CALL, CALLCODE, DELEGATECALL, STATICCALL.
4
For space reasons, we omit the details regarding the normalization of abstract stacks;

intuitively, any non-bottom element 𝑠𝑖 followed by 𝑠 𝑗 = ∅, where 𝑗 > 𝑖 , can be

replaced by 𝑠′𝑖 = ∅.

track of the topℎ elements. If the top (resp. bottom) element is taken

as input, then the top (resp. bottom) element is returned. Otherwise,

letting st = [𝑠0, 𝑠1, . . . , 𝑠ℎ−1] ∈ St#𝑘,ℎ and 𝑠 ∈ Z♯

𝑘
, we have

push(st, 𝑠) ≜ [𝑠1, 𝑠2, . . . , 𝑠ℎ−1, 𝑠] .

Namely, when pushing element 𝑠 onto st, we shift down (i.e., left)

all the elements of the stack, removing the bottom (i.e., left-most)

element 𝑠0 and adding the new element 𝑠 in the top (i.e., right-most)

position. For instance, in Fig. 1b we show the result of abstractly

executing the EVM bytecode PUSH1 0x06 when starting from the

abstract stack of Fig. 1a. It should be noted that all the concrete

stacks approximated by the abstract stack in Fig. 1a are known

to have stack size at most 3, since the element at depth 4 is ∅; in
contrast, the abstract stack of Fig. 1b describes a set of concrete

stacks having an arbitrary size.
5

Similarly, the abstract function pop : St#
𝑘,ℎ
→ St#

𝑘,ℎ
pops an

element from an abstract stack. If the top element is taken as input,

then top is propagated. If the bottom or the empty stack elements

are taken as input, bottom is returned. Otherwise, letting st =

[𝑠0, 𝑠1, . . . , 𝑠ℎ−2, 𝑠ℎ−1] ∈ St#𝑘,ℎ we have:

pop(st) ≜
{
[∅, 𝑠0, 𝑠1, 𝑠2, . . . , 𝑠ℎ−2] if 𝑠0 = ∅;
[⊤

Z♯

𝑘

, 𝑠0, 𝑠1, 𝑠2, . . . , 𝑠ℎ−2] otherwise.

Intuitively, when popping the topmost element 𝑠ℎ−1 from stack st,
we have two cases: we shift up (i.e., right) all the other elements of

the stack and fill the bottom (i.e., leftmost) position with either ∅
(if 𝑠0 = ∅, so that the stack was known to have size less than ℎ), or

⊤
Z♯

𝑘

(if 𝑠0 ≠ ∅, so that the size of the stack was unbounded). As

an example, the abstract stack in Fig. 1c is obtained by popping an

element from the abstract stack of Fig. 1b.

3.1 Jump Resolution
In the previous section, we defined a parametric abstract stack

domain and we want to use it to resolve orphan jumps. To show

how the proposed jump resolution algorithm works, let us consider

as running example the bytecode fragment shown in Fig. 2a, with

an orphan jump (JUMPI).
Note that each CFG node is identified by the corresponding

program counter pc (i.e., its position in the list of opcodes); we

will write stmt (pc) to denote the opcode at node pc; provided no

ambiguity can arise, when referring to figures we will informally

denote a CFG edge pc
1
→ pc

2
as stmt (pc

1
) → stmt (pc

2
).

The pseudocode implementing the construction of the CFG of an

EVM bytecode program is reported in Pseudocode 1, with the pro-

cedure buildCFG (lines 1–8) as entry point. The function takes as

input an EVM bytecode program; it starts by building a partial CFG,
i.e., a control-flow graph with no jump destination resolved (line

2). Considering the running example reported in Fig. 2a, the CFG

obtained by this operation is the one reported in Fig. 2c. Note that

just the false branch of the orphan JUMPI has been resolved in this

phase (i.e., the red edge JUMPI
ff→ INVALID), since it corresponds

5
The maximum size of any concrete EVM stack is 1024 and the program execution

halts exceptionally if the stack grows beyond this limit; we obviously consider here

the case ℎ < 1024.

13
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PUSH1 0x05
PUSH1 0x05
EQ
PUSH1 0x08
PUSH1 0x04
ADD
JUMPI // orphan jump
INVALID
JUMPDEST
PUSH1 0x01
JUMPDEST

(a)

{12}

{1}

∅

∅

(b)

(c) (d)

Figure 2: (a) Running example, (b) JUMPI’s input abstract
stack, (c) starting CFG, (d) final CFG.

to the opcode syntactically occurring after the JUMPI instruction
in the source code.

To resolve the target destination of the orphan jumps, we rely

on the analysis of the obtained partial CFG, using the abstract

stack domain of Def. 3.3. First, we set the two parameters needed

for the analysis, ℎ corresponding to the stack height and 𝑘 the

maximum size of its set elements (line 3), then we rely on the

procedure jumpResolver (lines 10-32), that runs the analysis based

on abstract stacks on the input (and potentially partial) CFG (line

12); in our running example we consider ℎ = 4 and 𝑘 = 2. This

operation computes the entry and exit invariants for each node of

the CFG, i.e., the abstract stack that the node takes as input and the

resulting stack after applying the abstract semantics of the opcode

on the input abstract stack.

Lines 14–30 inspect the analysis results of each jump node pc
1

(JUMP and JUMPI nodes). Following the running example, let us

focus on the latter case. Lines 16–17 inspect the element at the top

of the abstract stack incoming to the jump node pc
1
, ignoring it if

Pseudocode 1 (Jump solver algorithm.)

1: function buildCFG(P)
2: G ← partialCFG(P)
3: let ℎ, 𝑘 ∈ N ∖ {0};
4: do
5: changed ← jumpSolver(G, ℎ, 𝑘 )
6: while changed;
7: return G;
8: end function
9:

10: function jumpSolver(G, ℎ, 𝑘)
11: let G = ⟨𝑁, 𝐸⟩;
12: A ← 𝑟𝑢𝑛𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 (G, ℎ, 𝑘 ) ;
13: changed ← false;
14: for all (st𝑖𝑛, pc

1
, st𝑜𝑢𝑡 ) ∈ A do

15: if stmt (pc
1
) ∈ {JUMP, JUMPI} then

16: 𝑠 ← top(st𝑖𝑛 ) ;
17: if 𝑠 ∉ {⊤Z,⊤Z,⊤Z♯

𝑘

} then

18: for all pc
2
∈ 𝑠 do

19: if stmt (pc
2
) = JUMPDEST then

20: if stmt (pc
1
) = JUMP then

21: 𝐸 ← 𝐸 ∪ {pc
1
→ pc

2
}; ⊲ JUMP case

22: else
23: 𝐸 ← 𝐸 ∪ {pc

1

tt→ pc
2
}; ⊲ JUMPI case

24: end if
25: changed ← true;
26: end if
27: end for
28: end if
29: end if
30: end for
31: return changed;
32: end function

it is one of the special ⊤ elements. Then, an edge is added from pc
1

to pc
2
(a true edge, in the case of JUMPI) for each program counter

pc
2
contained in the integer set, provided the target of the edge is a

valid JUMPDEST opcode. In our running example, the input abstract

stack of the orphan JUMPI is the one depicted in Fig. 2b, thus line 23

adds the true edge from the JUMPI node to the node with program

counter equal to 12, i.e., the JUMPDEST node, as depicted in Fig. 2d.

jumpSolver yields true if and only if at least one edge is added to
the CFG; the main procedure buildCFG keeps calling jumpSolver

until no edge is added to the final CFG (lines 4–6), after which it

stops and returns the CFG (line 7). In our running example, the

final CFG is reported in Fig. 2d.

3.2 From Abstract Stacks to Sets of Abstract
Stacks

In the previous section, we analyzed EVM bytecode programs using

a single abstract stack of size ℎ, containing elements of the Z♯

𝑘
domain. To improve the number of solved jumps, we now lift the

previous abstract stack domain to sets of abstract stacks. Indeed,
when a loop occurs in the source code, the previous analysis uses

the least upper bound (lub) operator to merge abstract stacks into

a single abstract stack; this may cause a precision loss when the

top-most elements of the collected abstract stack are in turn merged

14
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via the lub of the Z♯

𝑘
domain and we happen to exceed 𝑘 : the result

would be ⊤
Z♯

𝑘

, losing all information about the integers in the set

(and the possible targets of a potential jump statement).

Thus, we define abstract stack powerset domain SetSt#
𝑘,ℎ,𝑙

, con-

sisting of sets of abstract stacks with at most 𝑙 elements (with a

special element ⊤SetSt#
𝑘,ℎ,𝑙

denoting the top element), whose height

is at most ℎ. Since we keep a collection of abstract stacks, we no

longer need to compute the lub on them and hence each element

of an abstract stack can now be an integer value (i.e., in our setting,

an integer set of at most 𝑘 = 1 elements).

Definition 3.4 (𝑙-sized abstract stacks set domain).

⟨℘≤𝑙 (SZ♯

1
,ℎ
) ∪ {⊤SetSt#

1,ℎ,𝑙
},⊔SetSt#

1,ℎ,𝑙
,⊓SetSt#

1,ℎ,𝑙
,⊤SetSt#

1,ℎ,𝑙
,∅⟩

Partial order, least upper bound and greatest lower bound opera-

tions corresponds to the set inclusion, union and intersection, re-

spectively, and when the size of the result exceeds 𝑙 , then ⊤SetSt#
𝑘,ℎ,𝑙

is returned.

Pseudocode 1, working on single abstract stacks, can be adapted

to work on sets of abstract stacks. In particular, line 12 of Pseu-

docode 1 will return a set of abstract stacks, and lines 14–32 are

applied to each element of the set.

4 Experimental Evaluation
We implemented EVMLiSA, an abstract interpretation-based static

analyzer for EVMbytecode based on LiSA (Library for StaticAnalysis)
[8, 13], that implements the approach described above to generate

CFGs from EVM bytecodes. EVMLiSA, along with the dataset used

for the experimental evaluation, is available at

https://github.com/lisa-analyzer/evm-lisa.

For experimental evaluation, we used a dataset of existing smart

contracts from the main public network of Ethereum. They were

obtained by querying the Etherscan APIs [7]. From this list, we

extracted those with less than 3000 opcodes (to keep the experi-

ment time reasonable and allow for manual inspection), obtaining

a benchmark suite consisting of 1697 smart contracts. Overall, the

benchmark suite contains ∼3M opcodes, of which ∼240K corre-

spond to jump opcodes.

Our experimental evaluation measures the number of resolved

jumps, using the following classification; if a jump node is not

reached in the CFG by a path from its entry node, we label the

jump as maybe unreachable. Otherwise, if a jump is reached with a

set of possible stacks 𝑆 = {st0, . . . , st𝑛}, with st𝑖 = [𝑠𝑖
0
, . . . , 𝑠𝑖

ℎ−1] ∈
St#

𝑘,ℎ
, 𝑛 ∈ N, then we label it as:

• resolved if ∀𝑖 ∈ [0..𝑛] . 𝑠𝑖
ℎ−1 ∉ {⊤Z,⊤Z♯

𝑘

}; that is, all the top
values of 𝑆 are integer values or ⊤Z;

• unresolved if ∃𝑖 ∈ [0..𝑛] . 𝑠𝑖
ℎ−1 ∈ {⊤Z,⊤Z♯

𝑘

}; that is, if there
is at least one stack reaching the jump with an unknown

numerical value that may correspond to a valid jump desti-

nation;

• definitely unreachable if 𝑆 = ∅; that is, no stack reaches the

jump node;

• maybe unresolved if 𝑆 = ⊤SetSt#
𝑘,ℎ,𝑙

; that is, the stack set

exceeded the maximal stack size 𝑘 ;

Table 1: Overall classification of jump opcodes.

% jumps

classification all tests refined tests

resolved 96.73 97.81

maybe unreachable 2.41 0.00

definitely unreachable 0.69 2.17

unresolved 0.16 0.00

maybe unresolved 0.01 0.02

Note that, one can try to reduce the number of unresolved jumps

by fine-tuning the parameters 𝑙 and ℎ. We ran EVMLiSA on the

benchmark suite of 1697 smart contracts described above with

the powerset of abstract stacks domain described in Sect. 3.2, with

ℎ = 128, and 𝑙 = 32, corresponding to the maximal height of abstract

stacks and the maximal size of abstract stack sets, respectively.

Experiments have been performed on the HPC architecture [5] of

the University of Parma, Italy.

The 2nd column in Tab. 1 shows the results obtained on all the

considered benchmarks. It is important to highlight why a jump

node that is not reached by a path from the CFG’s entry point is

marked as maybe unreachable: this is because if there exist other
jump nodes classified as unresolved or maybe unresolved, then this

“unreachable” jump node could be reached passing through some

of those unresolved jumps; thus, it cannot be classified as definitely
unreachable. However, if a smart contract contains no unresolved
and maybe unresolved jumps, then all of its maybe unreachable
jumps can be safely labeled as definitely unreachable.

When manually inspecting the experimental results, we noticed

that the cause for jumps classified as (maybe) unresolved was the

presence of the SLOAD opcode. This operator pops an element from

the stack and uses it as a key to retrieve the value stored in the

permanent memory of the blockchain, which is intrinsically stat-

ically unknown; hence, the abstract semantics models SLOAD by

popping an element from the stack and pushing the abstract value

⊤Z. In particular, we noticed that the retrieved value was used as a

jump destination of a jump node, causing the jump to be labeled as

unresolved. It is important to note that this may happen due to the

over-approximation occurring during the static analysis process,

i.e., at run-time, the value returned by SLOAD is not actually used

to resolve a jump destination. While leaving the handling of this

specific precision problem as future work, we performed a further

experiment by refining the aforementioned benchmark, selecting

only the smart contract where the value returned by SLOAD does
not affect the jumps’ destination resolution. The refined bench-

mark consists of 549 smart contracts, containing ∼837K opcodes, of

which ∼59K are jump opcodes. The results obtained on the reduced

benchmark suite (again with ℎ = 128 and 𝑙 = 32) are shown in

the 3rd column of Tab. 1. Specifically, 12 smart contracts out of

549 contain a jump marked as maybe unresolved. We recall that

these jumps are labeled this way because the stack set exceeded the

maximal stack set size 𝑙 = 32, and thus the abstract value reaching

the jump is ⊤SetSt#
1,128,32

. By fine-tuning the maximal stack set size

to 𝑙 = 150, all these jumps can be marked as resolved.

Soundness Thanks to the abstract interpretation framework, the

soundness of the sets of stacks we compute is guaranteed. Note that
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our analysis provides a conditional result: for the whole process

to be formally sound (i.e., for a formal guarantee that the obtained

CFG contains every possible jump edge that might be traversed at

runtime), it is required that no unresolved, maybe unresolved and

maybe unreachable jumps are left.

5 Related Work
Ethereum enjoys a wide range of smart contract verification tools,

although many of them only support high-level source analysis

rather than EVM bytecode analysis [9].

Regarding the static construction of CFGs for EVM bytecode,

the state-of-art mainly involves symbolic execution techniques and

sometimes SMT solvers. The main limitation of this approach is the

fact that symbolic execution generally does not provide guarantees

about soundness (i.e not all execution paths are taken into account

during the analysis) and especially the execution of an SMT solver

may require a considerable amount of time or in the worst case not

terminate (i.e. satisfiability problem is undecidable) leading to not

being able to analyze the contract. For instance, Oyente [12], also

employed by EthIR [1], computes edges that cannot be statically

determined on the fly during a symbolic execution also exploiting

the SMT solver Z3 [4] to eliminate provably infeasible traces from

consideration. However, as reported by the authors, the analyses

in some cases took more than 30 minutes for a single contract or

ended without results due to some timeouts. Mythril [3] also em-

ploys symbolic execution and SMT solving. Instead, EtherSolve [14]

computes CFGs (not necessarily sound) using symbolic execution

only, but it empirically shows a high degree of precision.

6 Conclusion
In this paper, we presented a new approach aimed at building a

sound CFG from EVM bytecode smart contracts, and we imple-

mented our approach in EVMLiSA. As noted in the experimental

evaluation, the main drawback in reaching our goal is due to the

SLOAD opcode, which operates on permanent storage, that is un-

known at compile time. Nevertheless, we achieve a sound CFG on

all smart contracts if this opcode does not affect the destinations of

jump nodes, by fine-tuning the analysis parameters regarding the

maximal stack height and the maximal stack set size. While in our

experiments the analysis parameters are fixed and independent of

the specific smart contract, future work will explore heuristics to

choose the best setting for a given smart contract. This would help

us both to increase the precision of the CFG construction and to

reduce the fake execution paths, such as those likely leading to the

usage of SLOAD-retrieved values as jump destinations.

As mentioned in Sect. 5, the most closely related work to ours

is Ethersolve, despite it not claiming soundness. Preliminary ex-

periments show that EVMLiSA achieves soundness on more EVM

bytecode smart contracts than Ethersolve while also resolving more

jump destinations. Nevertheless, future work will provide a detailed

comparison between the two tools in terms of resolved jumps.

Finally, this paper takes the first step towards making EVMLiSA

a static analyzer for detecting run-time errors on EVM bytecode.

By building the CFG, EVMLiSA will provide specific checkers for

statically detecting popular smart contract vulnerabilities, such as

reentrancy [15] and numerical under/overflows [10].
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